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Abstract: A linear stability analysis of twisted flux-tubes (strings) in an SU(2) semilo-

cal theory — an Abelian-Higgs model with two charged scalar fields with a global SU(2)

symmetry — is carried out. Here the twist refers to a relative phase between the two com-

plex scalars (with linear dependence on, say, the z coordinate), and importantly it leads

to a global current flowing along the the string. Such twisted strings bifurcate with the

Abrikosov-Nielsen-Olesen (ANO) solution embedded in the semilocal theory. Our numer-

ical investigations of the small fluctuation spectrum confirm previous results that twisted

strings exhibit instabilities whose amplitudes grow exponentially in time. More precisely

twisted strings with a single magnetic flux quantum admit a continuous family of unstable

eigenmodes with harmonic z dependence, indexed by a wavenumber k ∈ [−km, km]. Carry-

ing out a perturbative semi-analytic analysis of the bifurcation, it is found that the purely

numerical results are very well reproduced. This way one obtains not only a good qualita-

tive description of the twisted solutions themselves as well as of their instabilities, but also

a quantitative description of the numerical results. Our semi-analytic results indicate that

in close analogy to the known instability of the embedded ANO vortex a twisted string is

also likely to expand in size caused by the spreading out of its magnetic flux.
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Introduction

Topological defects, such as domain walls, strings and monopoles arise in many field theory

models with spontaneous symmetry breaking. These objects are expected to be created

during phase transitions, and are likely to play an important role in the early universe

and more generally in cosmology [1]. Typically these defect solutions are stable because

there is an infinite energy barrier separating them from the vacuum. An important class

of defects is constituted by line-defects called cosmic strings. A cosmic string is typically a

flux-tube, enclosing a certain number of magnetic flux quanta. In the plane orthogonal to

its direction a cosmic string corresponds to a vortex solution. Vice versa, any vortex in the

plane can be extended to a straight string in the orthogonal direction to the plane. The

well-known Abrikosov-Nielsen-Olesen (ANO) vortex of the Abelian Higgs model serves as

a prototype straight cosmic string. ANO vortices are characterized by an integer winding

number, n, determining their magnetic flux, and by the mass ratio, β = m2
s/m

2
v (ms resp.

mv denoting the mass of the scalar resp. vector fields).

Rather interesting, cosmic string-type defect solutions have been found in semilocal

theories where there is no topological stability [2–4]. An important class of semilocal

theories is provided by Abelian Higgs models with a suitably extended scalar sector, the
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simplest one being two complex scalar fields admitting global SU(2) symmetry. Semilocal

models are quite interesting since both global and local symmetries are simultaneously

broken; for a comprehensive review we refer to [5]. Abelian Higgs models with an extended

scalar sector contain ANO-type vortices, which correspond to a simple embedding. Quite

remarkably semilocal models exhibit stable vortices, despite the first homotopy group of

the vacuum manifold being trivial [2, 3]. The linear stability of ANO vortices embedded

into SU(N) symmetric semilocal models has been examined in ref. [3], by computing their

small fluctuation spectrum. It has been found that embedded ANO vortices are stable

only if β ≤ 1. For β > 1 there is a family of energy lowering eigenmodes, parameterized

by the z-direction wave number, k ∈ [−km, km], with the lowest lying eigenmode being z-

independent. This homogeneous unstable mode can be seen to correspond to a “magnetic

spreading” instability [3, 7]. The long time dynamics of the instability (i.e. the numerical

solution of the full nonlinear field equations) has also been studied, in ref. [10]. There it

is found that for β > 1 embedded ANO vortices undergo indeed a homogeneous expansion

as expected from the analysis of ref. [3].

The case β = 1 is quite special, for here, instead of there being a unique (and stable)

vortex solution satisfying the first order Bogomol’nyi equations [6], there is a continu-

ous family of them having the same energy [3]. The Standard Model counterparts of

the embedded ANO solutions are the Z-strings, which have been shown to be stable for

sin2 θW & 0.9 [8].

Recently, a new family of current carrying, “twisted” string solutions have been dis-

covered in the SU(2) symmetric semilocal model [9]. These solutions are characterized by

a relative phase difference, exp(iωz), between the two components of the scalar field, where

z is the coordinate along the string and ω is the twist. Twisted strings exist only for β > 1

where the embedded ANO solutions are unstable. Quite remarkably the energy of twisted

strings is lower than that of the embedded ones (as a matter of fact the energy per unit

length of twisted strings is a monotonously decreasing function of the twist ω). The insta-

bility of the embedded ANO vortices for β > 1 can be seen to correspond to a bifurcation

with twisted strings. Clearly the problem of stability of twisted strings is an important one.

A linear stability analysis of twisted strings has been presented by ref. [16], and a

family of unstable modes has been found. More precisely for all values of the twist ω, the

lowest eigenvalue belongs to a nonzero value of the wave number k of the eigenmode in the

longitudinal direction. In particular there are no homogeneous (z-independent) negative

energy eigenmodes. Noting the analogy between the harmonic z-dependence of the insta-

bility mode and the Plateau-Rayleigh instability in hydrodynamics (i.e. the fragmentation

of a fluid stream into droplets), it has been argued in ref. [16] that the unstable eigenmode

of twisted strings signals its breakup into small droplets.

In this paper, we present a detailed analysis of the stability of twisted vortices. Working

in a different gauge than ref. [16] our work provides an independent check of the results of

ref. [16]. Both ref. [16] and the present paper apply linearization analysis. In the present

paper, following ref. [11], we work in the background field gauge. By solving the small

fluctuation equations numerically for a large range of the parameters of the problem we

confirm the numerical results of ref. [16], although we also find some small discrepancies
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which do not effect, however, the validity of the numerical results. We also find that

twisted strings possess a family of unstable modes, parametrized by their wave number

in the z direction, k ∈ [−km, km]. These results are in agreement with those of ref. [16].

In addition to a full fledged numerical approach, we have also developed a semi-analytical

description of the instability eigenmodes of twisted vortices for values of the twist near

the bifurcation point. In our view this sheds some light on the nature of the instability

of twisted strings. The description of the bifurcation also makes it possible to obtain the

eigenvalues and eigenmodes of embedded strings as a deformation of those of twisted strings

(with the deformation parameter being a function of the difference of the twist ω and the

bifurcation point ωb). We note that twisted strings with periodic boundary conditions are

also unstable in the semilocal model.

Clearly a linear stability analysis is not sufficient to draw definite conclusions on the

issue of the final state of twisted strings. There are nevertheless two important properties of

the instabilities which can form the basis of some speculations on the long-time dynamics of

twisted vortex instability. Firstly, not far from the bifurcation with the ANO vortices, the

unstable modes of twisted vortices and those of the embedded ANO ones are very similar.

The field component, which dominates the eigenmodes close to the one corresponding to the

largest negative eigenvalue is nearly homogeneous. Secondly, independently of the absence

of z-independent instability eigenmodes for twisted strings the z-independent instability

mode of the embedded ANO vortices is still an energy lowering perturbation. In such a case,

a sufficiently general initial perturbation (like a lump on the string, see subsection 2.4) over-

laps with the eigenmode corresponding to the most rapidly growing ones, those being almost

z-independent. Therefore we predict that twisted strings whose twist is close to the value at

the bifurcation point start to expand nearly homogeneously very similarly to the instability

of embedded ANO vortices. For twisted strings whose twist is far from the bifurcation value

this expansion may become local, in the sense that expanded lumps may form on the strings.

The long-time dynamics, however, is expected to be rather different for twisted strings as

compared to the embedded ANO ones. This difference is due to the global current flowing

in twisted strings. We have found that to first order in perturbation theory the current

remains localized to the string. Unless the current is completely carried away by radiative

effects which come from higher orders in perturbation theory, in contrast to the expansion

of the embedded ANO strings [10], the expansion of twisted ones cannot go on indefinitely.

It is also conceivable that the instability of static (or stationary) twisted strings signals

that there are time dependent (oscillating) breather-like states. We also present some argu-

ments, that twisted strings are unlikely to break up into small droplet-like configurations.

The outline of the paper is as follows: in section 1 we recapitulate the main character-

istics of the SU(2) semilocal theory and its vortex solutions. In subsection 1.3 we give a

semi-analytical description of the bifurcation of twisted vortices with the embedded ANO

vortex. In section 2 we turn our attention to the stability problem of the twisted vortex

solutions, and present the numerical results. In subsections 2.2 and 2.3 the behavior of the

linearized equations near the bifurcation is studied. In subsection 2.4 the properties of the

eigenmodes are analyzed, and the possible scenarios for the dynamics of the instability are

presented. The technical details of the calculations of section 2 are relegated to appendix A.
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In appendix B a summary of the perturbations of embedded ANO vortices is given.

1 The SU(2) semilocal theory and its vortices

1.1 The SU(2) semilocal theory

The 4 dimensional (4D) action of the SU(2) semilocal theory can be transformed by suitable

rescalings, rendering the rescaled fields and coordinates to be dimensionless, and setting

the charge of the scalar particle to unity, to the form:

S =

∫

d4x

{

−1

4
FµνF

µν + (DµΦ)†DµΦ − β

2
(Φ†Φ − 1)2

}

. (1.1)

Where Fµν = ∂µAν − ∂νAµ, DµΦ = ∂µΦ − iAµΦ, ΦT = (φ1, φ2). The signature of the flat

Minkowskian metric used here is (+,−,−,−). Because of the spontaneous breaking of the

U(1) gauge symmetry the physical spectrum contains two massive particles, a scalar and

a vector whose mass ratio is given by β = m2
s/m

2
v. The fields transform under the U(1)

gauge symmetry as

Aµ → Aµ + ∂µΛ(x) , Φ → eiΛ(x)Φ , (1.2)

while the complex doublet, ΦT = (φ1, φ2), transforms as the fundamental representation of

the global SU(2) symmetry. The Euler-Lagrange equations following from the action (1.1)

can be written as:

∂ρFρµ = i{(DµΦ)†Φ − Φ†DµΦ} , (1.3a)

DρD
ρΦ = β(1 − |Φ|2)Φ , (1.3b)

where |Φ|2 = Φ†Φ = |φ1|2 + |φ2|2. Any solution of the Abelian-Higgs model with a sin-

gle scalar field, (Aµ , φ1), can be embedded into the semilocal model simply by putting

(Aµ ,Φ := φ1Φ0) where Φ0 is a constant SU(2) doublet of unit norm, Φ†
0Φ0 = 1.

The SU(2) symmetric semilocal theory has the following conserved Noether currents

jâµ = −i
(

(Dµφa)
∗T â

abφb − φ∗aT
â
abDµφb

)

, (1.4)

where â = (0, a) and T â = (1, τa) with τa being the Pauli matrices. The currents jaµ
generate the global SU(2) while j0µ the local U(1) symmetry.

We shall also consider the special theory corresponding to the β → ∞ limit. In this

limiting case, the scalar fields are constrained by Φ†Φ ≡ 1, and the limit theory is nothing

but a gauged CP1-model. The constraint can be taken into account by replacing the scalar

potential in the Lagrangian of eq. (1.3) by a Lagrange multiplier term:

L∞ = −1

4
FµνF

µν + (Dµφa)
∗Dµφa − λ(|φ|2 − 1). (1.5)

The equations of motion in this case are very similar to the regular case,

DµD
µφa = −λφa

∂µFµν = −i(φ∗cDνφc − φc(Dνφc)
∗),

(1.6)

with

λ = φ∗aDµD
µφa = φa(DµD

µφa)
∗ . (1.7)
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1.2 Vortex solutions

To obtain twisted vortex solutions of the theory (1.1), one needs to write down the most

general axially symmetric Ansatz [9]. Here, “axially symmetric” is meant in the general

sense, that rotations around the symmetry axis, or translations in its direction can be

compensated by a suitable gauge transformation [12].

Let us choose the z = x3 coordinate along the symmetry axis. Choosing a suitable

reference frame the configuration can be rendered static, which choice will be assumed

from now on. The axially symmetric configuration has rotational symmetry in the (x1 , x2)

plane, and is then described by the following general Ansatz:

φ1(r, ϑ, z) = f1(r)e
inϑ,

φ2(r, ϑ, z) = f2(r)e
imϑeiωz ,

Aϑ(r, ϑ, z) = na(r),

A3(r, ϑ, z) = ωa3(r),

(1.8)

with A0 = 0, Ar = 0. The parameter ω, which describes the z dependence of the relative

phase of the two scalar field components, is the twist.

In what follows we shall consider the simplest and most important class of configura-

tions with m = 0 and with n = 1, but of course our analysis can be easily extended for the

general case. The vortex profile functions in (1.8) obey the equations

1

r
(ra′3)

′ = 2a3|f |2 − 2f2
2 ,

r

(

a′

r

)′

= 2f2
1 (a− 1) + 2f2

2a ,

1

r
(rf ′1)

′ = f1

[

(1 − a)2n2

r2
+ ω2a2

3 − β(1 − |f |2)
]

,

1

r
(rf ′2)

′ = f2

[

(na)2

r2
+ ω2(1 − a3)

2 − β(1 − |f |2)
]

.

(1.9)

Regularity at the origin r = 0 is ensured by the boundary conditions a→ 0, f1 → 0, f2 → c,

a3 → c′, where c, c′ are constants, while for r → ∞ we demand a→ 1, f1 → 1 f2, a3 → 0.

The embedded Abrikosov-Nielsen-Olesen (ANO) solutions correspond to f2 = a3 = 0

in eqs. (1.9). Besides these, new classes of vortex solutions have been discovered. First,

ref. [3] found a one-parameter family of solutions for β = 1 with f2 6= 0 and a3 = 0.

The parameter of the vortices in this family of solutions can be identified with their width

(denoting the parameter with ξ, the radial decay of the magnetic field is 1−(r/ξ)−2). These

solutions satisfy a Bogomol’nyi type energy bound [2], therefore their energy is degenerate,

and they obey simpler, first order field equations.

Another one-parameter class of solutions has been discovered in [9] for β > 1 with both

f2 and a3 6= 0. These solutions are parameterized by the value of their twist, 0 < ω < ωb(β).

At ω = ωb these twisted vortices bifurcate with the embedded ANO vortex (for some

numerical values of ωb(β) for a range of β see ref. [9]). There is a similarity between this

family of vortices and the one of ref. [3]. The parameter ω also characterizes the width of
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vortices: a lower value of ω corresponds to a more diluted vortex with a slower radial decay

of the magnetic field, and a higher value of the scalar condensate at the origin. (However,

one should note, that the radial decay of these solutions is different from that of the β = 1

ones, as here f2 decays as exp(−ωr).)
An important property of twisted vortices is that there is a global current flowing along

them. In the coordinate system fixed by the Ansatz (1.8), the current is the third isospin

component of the semilocal current (1.4) in the z direction. The total current flowing along

the string can thus be written as

I3 =

∫

rdrdϑj33 . (1.10)

As the twist ω decreases, the current increases and the twisted vortex becomes more and

more spread out [9]. It appears that the limit ω → 0 is somewhat singular, nevertheless

in this limit twisted vortices converge pointwise to a configuration which is precisely the

large width limit of the β = 1 semilocal vortices of ref. [3].

Another important property of twisted vortices is that they have lower energy than

the embedded ANO solutions. This indicates that such twisted vortices may be preferred

by physical processes over the embedded ANO vortices. In fact, for fixed β, the energy

monotonously decreases as ω decreases, i.e. as we go further away from the bifurcation [9].

In the β → ∞ limiting theory f1 and f2 are related by the constraint f2
1 + f2

2 ≡ 1. A

convenient way of parameterizing them is

f1 = sin θ , f2 = cos θ , (1.11)

which yields the profile equations

1

r

(

ra′3
)′

= 2
[

a3 − cos2 θ
]

,

r

(

a′

r

)′

= 2(a− sin2 θ) ,

1

r

(

rθ′
)′

=
1

2

[

(2a3 − 1)ω2 − n2

r2
(2a − 1)

]

sin(2θ) .

(1.12)

In this case the embedded ANO solution has infinite energy, whereas the twisted vortices

are of finite energy and they exist for all values of ω [9].

1.3 Bifurcation of the embedded ANO solution

It is by now well known [3] that the embedded ANO vortices are unstable to small per-

turbations of the f2 variable. This instability corresponds to the bifurcation of the ANO

vortices with the twisted vortex solutions [9]. The systematic expansion of a twisted vortex

– 6 –
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near the bifurcation point can be then written as:

f1 = f
(0)
1 + ǫ2f

(2)
1 + · · ·

f2 = ǫf
(1)
2 + ǫ2f

(2)
2 + · · ·

a = a(0) + ǫ2a(2) + · · ·
a3 = ǫ2a

(2)
3 + · · ·

ω = ωb + ǫω1 + ǫ2ω2 + · · ·

(1.13)

where a(0) , f
(0)
1 denotes the ANO vortex, whose equations can be read off from equa-

tions (1.9) by putting f2 = a3 = 0. In the above expansion, we have omitted some terms

linear in ǫ. When solving the equations of the field components, these turn out to be

zero (i.e. their equation is a homogeneous linear equation). As we shall see the only first

order term is f
(1)
2 . This is physically plausible too: the bifurcation is parameterized by the

growing of the condensate f2.

The equations for the field components can be obtained easily by substituting the

above expansion into the vortex profile equations (1.9). To first order in the ǫ expansion

the only non-trivial equation determines the second component of the scalar field,

(D
(0)
2 + ω2

b)f
(1)
2 := −1

r

(

rf
(1)
2

′)′

+

[

(na(0))2

r2
− β

(

1 − (f
(0)
1 )2

)

+ ω2
b

]

f
(1)
2 = 0 . (1.14)

(The operator D
(0)
2 should not be confused with the µ = 2 component of the covariant

derivative Dµ.) In second order the equation for f
(2)
2 can be written as

(D
(0)
2 + ω2

b)f
(2)
2 = −2ωbω1f

(1)
2 . (1.15)

Eq. (1.15) contains only a resonance term on the right hand side, therefore the solution of

this equation is f
(2)
2 = 0 and the removal of the resonance term yields ω1 = 0.

(

ra
(2)
3

′)′

/r − 2(f
(0)
1 )2a

(2)
3 = −2(f

(1)
2 )2 ,

(

rf
(2)
1

′)′

/r−
[

n2(1−a(0))2

r2
−β(1−3(f

(0)
1 )2)

]

f
(2)
1 +f

(0)
1

2n2(1−a(0))

r2
a(2) = βf

(0)
1 (f

(1)
2 )2 ,

r

(

a(2)′

r

)′

− 2(f
(0)
1 )2a(2) − 4(a(0) − 1)f

(0)
1 f

(2)
1 = 2a(0)(f

(1)
2 )2 .

(1.16)

The absence of the resonance term from the third order equations gives

ω2 = − 1

2ωb‖f (1)
2 ‖

(

f
(1)
2 ,

2na(0)

r2
na(2)f

(1)
2 − 2ω2

ba
(2)
3 f

(1)
2 + 2βf

(0)
1 f

(2)
1 f

(1)
2 + β(f

(1)
2 )3

)

,

(1.17)

where the scalar product and the norm is defined as

(f, g) :=

∫ ∞

0
rdrfg , and ‖f‖2 := (f, f) . (1.18)
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fitted curve
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Figure 1. The ω-ǫ dependence, β = 1.25

Identifying f2(0) with the perturbation parameter, ǫ, at the bifurcation point, we ob-

tain that

ǫ =

√

1

ω2
(ω − ωb) + . . . . (1.19)

We have compared the the results of the above perturbative bifurcation analysis, for

f2(0) as a function of ω with numerical results on figure 1. A fitted curve, of the form

[(ω − ωb)/ω2]
1/2 + ǫ1(ωb − ω), with ω2 and ǫ1 being the parameters fitted, as suggested

by perturbation theory, is also shown. See also table 5. Another nice comparison of the

twisted and ANO vortices can be seen on figures 2–3. We have drawn no figures of f1 and

a. Their perturbation series starts with a zeroth order ANO term, and the next correction

is of order ǫ2, therefore, the difference between the ANO background, the second order

perturbative result and the exact twisted vortex profile function is quite small.

As we can see from both the comparison of the ǫ-ω dependence and the vortex profile

functions, the above perturbative method gives a good approximation of twisted vortices,

even relatively far from the bifurcation, i.e. for ǫ = 0.2 . . . 0.3. In subsections 2.2 and 2.3

we will use this perturbatively obtained vortex background to explore the relation between

the instabilities of the embedded ANO vortices and those of the twisted ones.

2 Linear stability analysis

2.1 Perturbation analysis

Here we present a stability analysis of the twisted vortex solution based on the linearization

of the field equations about the vortex. Let φa = φa,bg + ǫδφa and Aµ = Aµ,bg + ǫδAµ, with
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Figure 2. The twisted vortex profile function f2 for β = 1.25, ω = 0.13. For comparison, we have

also plotted f1 and a in this figure (note the scaling by 1/4 of f1 and a).
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r

a3 exact

ε
2
 a3
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Figure 3. The twisted vortex profile function a3 for β = 1.25, ω = 0.13

φa,bg and Aµ,bg being the background solution. The index “bg” will be dropped in what fol-

lows; the total perturbed fields will not appear later on. Here, we will summarize the main

properties and the method of solution of the linear equations governing δφa and δAµ. Fol-
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lowing the footsteps of ref. [11] we will use the background field gauge. The main differences

between the present case and that of the ANO vortices is that here there are more field com-

ponents and the z-dependence does not decouple, which makes the problem computation-

ally more demanding. The main advantage of the background field gauge is the simplicity

of the resulting equations. Its main drawback is, that, unlike the method used by ref. [16],

it does not fix the gauge completely, which makes an analysis of ghost modes necessary.

The perturbation equations can be derived from a linearization of the field equations.

The resulting equations, taking into account that the background solution satisfies the

Lorentz gauge condition ∂µAµ = 0, can be cast into the form

D







δφa

δφ∗a
δAµ






= 0, (2.1)

where the operator D is






D1 + 2iδabA
µ∂µ − βφbφ

∗
a −βφbφa 2i∂µφb + 2Aµφb + iφb∂µ

−βφ∗bφ∗a D1 − 2iδabA
µ∂µ − βφ∗bφa −2i∂µφ

∗
b + 2Aµφ

∗
b − iφ∗b∂µ

−i∂νφ
∗
a + 2Aνφ

∗
a + iφ∗a∂ν i∂νφa + 2Aνφa − iφa∂ν |φ|22gµν − ∂µ∂ν + gµν�






, (2.2)

with D1 = −δab� +AµA
µδab − β(|φ|2 − 1)δab and � = ∂µ∂

µ.

In the β → ∞ limit, similarly to the regular case, the Lagrangian is expanded to second

order in δφa, δφ
∗
a and δAµ. Denoting the zeroth and first order terms of DµD

µφa with χa

and ψa, equation (A.8) can be written as ψa = 0. Now, the linearization of the Lagrange

multiplier (1.7) has to be added. The resulting equations of motion are

ψa − (λ(0)δφa + λ(1)φa) = 0,

ψ∗
a − (λ(0)δφ∗a + λ(1)φ∗a) = 0,

(2.3)

where

λ(0) =
1

2
(φ∗aχa + φaχ

∗
a) ,

λ(1) =
1

2
(δφ∗aχa + φ∗aψa + δφaχ

∗
a + φaψ

∗
a) .

(2.4)

The perturbation equations are invariant under infinitesimal gauge transformations of

the form
δφa → δφa + iχφa,

δAµ → δAµ + ∂µχ.
(2.5)

This gauge freedom can be dealt with by adding a gauge-fixing term 1
2 |F (A)|2 to the

Lagrangian,

F (A) := ∂µδA
µ + i(δφ∗aφa − φ∗aδφa) = 0. (2.6)

This helps one to get rid of the terms containing first order derivatives in D, yielding the

perturbation matrix






D1 + 2iδabA
µ∂µ − (β + 1)φbφ

∗
a −(β − 1)φbφa 2i∂µφb + 2Aµφb

−(β − 1)φ∗bφ
∗
a D1 − 2iδabA

µ∂µ − (β + 1)φ∗bφa −2i∂µφ
∗
b + 2Aµφ

∗
b

−2i∂νφ
∗
a + 2Aνφ

∗
a 2i∂νφa + 2Aνφa |φ|22gµν + gµν�






,

(2.7)
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where D1 = −δab� +AµA
µδab − β(|φ|2 − 1)δab.

It can be easily verified that the equation of δA0,

∂µ∂
µδA0 + 2|φ|2δA0 = 0 , (2.8)

decouples, just as in the case of the ANO vortex [11].

The gauge condition (2.6) does not fix the gauge completely, but still allows gauge

transformations whose generating function satisfies the ghost mode equation

∂µ∂
µχ+ 2|φ|2χ = 0 . (2.9)

The ghost modes cancel the δA0 modes, whose eq. (2.8) is identical to (2.9), and a part of

the spectrum of the gauge fixed operator (2.7). In the case of the embedded ANO vortices,

a straightforward analysis of ghost modes is possible, see appendix B.

Let us now apply a Fourier transform to the perturbation equations (2.7) in the t and

z variables. Introducing Ψ = (δφ1, δφ
∗
1, δφ2, δφ

∗
2, δAi, δA3, δA0)

T .

Ψ =

∫

dkdΩei(Ωt−kz)Ψ̃. (2.10)

This way, the perturbation equations can be brought into the form

MΨ̃ = Ω2Ψ̃. (2.11)

See appendix A for the details of the calculation and the matrix M. The angle variable ϑ

can be separated in a similar fashion, by the Fourier series expansion

Ψ̃ =
∑

ℓ

Ψℓe
iℓϑ. (2.12)

This yields the desired eigenvalue problem

MℓΨℓ = Ω2Ψℓ , (2.13)

where Mℓ is an ordinary differential operator in the radial variable r (see equation (A.8)

in appendix A). A similar expansion can be done for the ghost modes.

The numerical method used for solving equations (2.13) as well as the background

equations (1.9) was shooting to a fitting point. The resulting eigenvalues as a function of

k can be seen on figure 4 for β = 1.25, 2, 2.5 and the limit β → ∞. There are two unstable

modes, one which is the deformation of the unstable mode in s2 of the embedded ANO

vortex, which has a negative eigenvalue for 0 < k < km, and another one, which is the

deformation of the unstable mode in s∗2 of the embedded ANO vortex and has a negative

eigenvalue for 0 > k > −km. These two modes are related by a transformation of k → −k
and interchanging the fields s1, s2, a+ and the conjugate fields s∗1, s

∗
2, a−. The numerical

results exhibit this symmetry to a rather high accuracy.

In figure 4, we have plotted the dispersion relation of the unstable modes for 0 < k <

km. A closed form of this is not known, however, the approximation

Ω2 = Ω2
min + Ω2

2(k − kmin)
2 (2.14)
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ω Ω2
min Ω2

2 kmin

0.07 -0.00105 0.73927 0.05418

0.08 -0.00173 0.80044 0.06383

0.09 -0.00262 0.84997 0.07352

0.11 -0.00591 0.94158 0.09542

0.12 -0.00906 0.97588 0.10882

0.13 -0.01390 0.99548 0.12435

0.136 -0.01801 0.99984 0.13513

Table 1. Twisted vortex perturbations: parameters of the dispersion relation for β = 1.25

ω Ω2
min Ω2

2 kmin

0.13 -0.00197 0.53731 0.09140

0.15 -0.00293 0.57959 0.10545

0.2 -0.00812 0.73531 0.14689

0.25 -0.02213 0.88462 0.19989

0.3 -0.05964 0.97901 0.27098

0.32 -0.08905 0.99561 0.30837

0.329 -0.10687 0.99969 0.32785

Table 2. Twisted vortex perturbations: parameters of the dispersion relation for β = 2

is empirically found to be very good. Note that kmin, the wavenumber corresponding to the

minimal eigenvalue, should not be confused with km standing for the maximal value of the

wave numbers of the unstable modes. In figure 5 one can see Ω2
min and kmin as a function

of ω for β = 1.25. The same data, for β = 1.25, 2 and 2.5 is summarized in tables 1, 2

and 3. In the case of the embedded ANO vortex, the form (2.14) of the dispersion relation

is exact. In ref. [16] it is claimed that the minimum value is achieved at k = ±ω, but for

smaller values of ω we have found a considerable deviation from kmin = ±ω (see especially

the curves corresponding to β → ∞).

Close to the bifurcation, our numerical results agree with those of ref. [16]. However,

for smaller values of ω, there is some discrepancy which we attribute to numerical errors.

It is important to note, that the modes discussed in this section are all part of the phys-

ical spectrum. This can be verified by solving the ghost equation (2.9). The ghost modes we

obtained do not have nodes and correspond to a positive eigenvalue, therefore there cannot

be lower eigenvalue modes. This shows, that the instability modes presented in this paper

are all physical (i.e. there are no negative eigenvalue ghost modes which could cancel them).

For the β → ∞ case the results of the numerical calculations can be seen (with the

parametrization used in the β < ∞ case) in table 4. See also the dispersion relation in

figure 4. In this case, there are no ghost mode solutions (note also that in the regular case,

the ghost mode eigenvalues increase for larger values of β). The β → ∞ data shows that

the instability modes persist for all values of β. For β → ∞ ωb → ∞, thus the β → ∞

– 12 –
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ω Ω2
min Ω2

2 kmin

0.14 -0.00211 0.50713 0.09848

0.15 -0.00249 0.51283 0.10565

0.2 -0.00498 0.57028 0.13811

0.25 -0.01112 0.69774 0.17859

0.3 -0.02468 0.82209 0.22846

0.35 -0.05385 0.92445 0.28949

0.4 -0.11798 0.98491 0.36985

0.42 -0.16215 0.99685 0.41056

0.427 -0.18142 0.99984 0.42641

Table 3. Twisted vortex perturbations: parameters of the dispersion relation for β = 2.5

ω Ω2
min Ω2

2 kmin

0.1 -0.000155 0.284781 0.042232

0.5 -0.007838 0.298390 0.266817

1 -0.053988 0.364306 0.585068

2 -0.402749 0.499033 1.356712

3 -1.195500 0.571684 2.179592

4 -2.466004 0.618034 3.016282

5 -4.215287 0.643379 3.855931

Table 4. Twisted vortex perturbations: parameters of the dispersion relation for β → ∞

β ωb ω2 ωfit
b ωfit

2 (Ω2)
(0)

(Ω2)(2) (Ω2)
(0)
fit (Ω2)

(2)
fit α

1.25 0.13694 -0.09926 0.13694 -0.09790 -0.0188 0.111 -0.0188 0.0802 —

2.0 0.32992 -0.17824 0.32989 -0.17815 -0.1088 0.488 -0.1088 0.3914 0.614

2.5 0.42744 -0.21244 0.42744 -0.21225 -0.1827 0.720 -0.1826 0.6003 0.501

Table 5. Perturbative and numerical data of vortex instability modes. Here, the subscript “fit”

denotes data obtained by fitting a parabola to the numerically obtained dispersion relation, close

to the minimum.

data can be used to study vortices with values of ω ≪ ωb. Our data indicates that for β

fixed, the family of unstable modes parameterized by k ∈ [−km, km] also persists for all

values of 0 < ω < ωb.

2.2 Bifurcation analysis of the perturbation operator

For values of the twist ω ≈ ωb we have expanded the vortex backgrounds in a suitable

parameter ǫ. In this paragraph we give the second order expansion of the perturbation

operator and its eigenvalues in the bifurcation parameter ǫ. For details, see appendix A.3.
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Figure 4. The dispersion relation of the unstable mode
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Figure 5. Minima of Ω2 and its location for β = 2 as a function of ω

The leading order equation of the mode pertinent to our problem is

D
(0)
2 s2 = (Ω2)(0)s2 , (2.15)

which yields the unstable mode of the embedded ANO vortex. Let us note here, that for

k = ω, this instability mode is z-independent. For other values of k, its z-dependence is har-

monic.

Let us now look at the first order correction to the eigenvalue. This correction, as
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Figure 7. Ω2

k=ωb
and its comparison with PT and the dependence of the minimal Ω2 on ǫ for

β = 1.25

known from quantum mechanics is given as

(Ω2)(1) =
1

‖s2‖2

(

s2,D
(1)
2 s2

)

= 0. (2.16)

Therefore, to obtain an ω-dependent eigenvalue, one must go to the second order in per-

turbation theory. Contributions quadratic in ǫ come from two sources: from O(ǫ2) terms

in the perturbation operator (i.e. corrections to the background functions of order ǫ2), and

from second order perturbation theory,

(Ω2)(2) = (Ω2)
(2)
B + (Ω2)

(2)
P . (2.17)

The first term is simply

(Ω2)
(2)
B =

1

‖s2‖2

(

s2,D
(2)
2 s2

)

= M22 +Mk
22(k − ωb) (2.18)

with

M22 =
1

‖s2‖2

(

s2,

[

−2(ℓ− na(0))na(2)

r2
+ 2βf

(0)
1 f

(2)
1 + (2β + 1)(f

(1)
2 )2

]

s2

)

(2.19)
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and

Mk
22 =

1

‖s2‖2

(

s2,
[

−2ω2 + 2ωba
(2)
3

]

s2

)

. (2.20)

To calculate the other contributions, let us first introduce the following notations (δA0

component dropped — it is decoupled in all orders; see also appendix B.)

ψ2 := (0, 0, s2, 0, 0, 0, 0)
T ,

ψ†
2 := (0, 0, 0, s∗2, 0, 0, 0)

T ,

ψS := (sS
0 , s

S
0 , 0, 0, a

S
0 , a

S
0 , 0)

T ,

ψA := (sA
0 ,−sA

0 , 0, 0, a
A
0 ,−aA

0 , 0)
T ,

a3 := (0, 0, 0, 0, 0, 0, a3)T .

(2.21)

In eq. (2.21), ψ2 is the unstable mode of the embedded ANO vortex (see eq. (2.15)) and

ψ†
2 is its conjugate mode (it can be seen easily, that the equation of s∗2 is the same as that

of s2 with the transformation k → −k). ψS and ψA are the symmetric and antisymmetric

bound modes of the ANO vortex, respectively, while a3 is another bound mode of the ANO

vortex, satisfying the same equation as ghosts.

The dispersion relation of these modes (in the same order as in eq. (2.21)) is given as

Ω2
s2 = λ2

2 + (k − ω)2 ,

Ω2
s2∗ = λ2

2 + (k + ω)2 ,

Ω2
S = λ2

S + k2 ,

Ω2
A = λ2

A + k2 ,

Ω2
a3 = λ2

a3 + k2 ,

(2.22)

with λi being constants (lowest eigenvalues). For second order perturbation theory, the

following matrix elements are needed,

M22∗ =
1

‖s2‖2

(

s2, U
(1)
2 s∗2

)

= 0 ,

M2S =
1

‖s2‖‖ψS‖
[(

s2, (V
(1) + V ′(1))sS

0

)

+
(

s2, (A
(1)
2 +A′

2
(1)

)aS
0

)]

,

M2A =
1

‖s2‖‖ψA‖
[(

s2, (V
(1) − V ′(1))sA

0

)

+
(

s2, (A
(1)
2 −A′

2
(1)

)aA
0

)]

,

M23 =
1

‖s2‖‖a3‖
(

s2, B
(1)
2 a3

)

.

(2.23)

The part of the O(ǫ2) correction to the eigenvalue due to perturbation theory can be

written as

(Ω2)
(2)
P =

|M2S |2
λ2

S − 2ω2
b + 2kωb

+
|M2A|2

λ2
A − 2ω2

b + 2kωb
+

|M23|2
λ2

a3 − 2ω2
b + 2kωb

(2.24)

The contribution to the perturbation functions will be evaluated similarly using the for-

mulas well known from elementary quantum mechanics in subsection 2.3.
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Looking at the potentials in the equations of ψS and ψA (see figure 10 in appendix B),

one can easily understand why the mode ψS becomes quasi-bound (instead of bound) for

values of β above 1.5 (see appendix B). The contribution of these modes to PT has to

be taken into account when calculating the perturbation (2.24) of the eigenvalue. This

can be done as follows: the s-component of the quasi-bound mode varies slowly with the

energy in a given interval, while the a-component varies rapidly. This makes it possible, to

smoothen the contribution by using a low-lying quasi-bound mode, with the a-component

taken to be zero and reading off the integral of the state density over the energy interval,

in which the s-component is nearly constant, from the perturbation functions, and using a

correction factor α to calculate the energy correction:

(Ω2)
(2)
P =

α|M2S |2
λ2

S − 2ω2
b + 2kωb

+
|M2A|2

λ2
A − 2ω2

b + 2kωb
+

|M23|2
λ2

a3 − 2ω2
b + 2kωb

(2.25)

with the matrix elementM2S calculated from the smoothed ψS , and α is obtained from a

comparison of the perturbative and exact eigenmodes.

The eigenvalue Ω2 at k = ωb as a function of ǫ (near ω = ωb) can easily be calculated

with perturbation theory as outlined in the previous section. Second order perturbation

theory predicts

Ω2
k=ωb

= (Ω2)(0) + ǫ2(Ω2)(2). (2.26)

Values of (Ω2)(0) and (Ω2)(2) obtained with the perturbation theory methods of the previous

section and exact (numerical) values are compared in table 5 and figure 7. Similarly to the

case of the vortex backgrounds close to the bifurcation, there is a good agreement between

the exact eigenvalues and the perturbative ones, for moderate values of ǫ, i.e. approximately

for ǫ ≤ 0.2. This is an indication that the instability mode of the twisted vortex can be

regarded as a deformation of the instability mode of the embedded ANO vortex.

2.3 Perturbative calculation of the eigenfunction corresponding to the insta-

bility

In this section, we present the perturbation functions s1,ℓ, s
∗
1,−ℓ, s2,ℓ, s

∗
2,−ℓ, aℓ, a

∗
−ℓ, a3,ℓ. We

will also compare these with their first order perturbative expressions near the bifurca-

tion point.

Let us first note, that for vortices close to the bifurcation (i.e. ω close to ωb, ǫ ≪ 1),

the lowest lying negative eigenvalue is close to k = ω. Let us now choose a vortex which

can still be treated perturbatively, but it is not very close to an embedded ANO vortex,

eg. ω = 0.13 for β = 1.25, and examine its instability mode for k = ω.

In the previous subsection, we have applied perturbation theory to obtain the eigen-

values of the perturbation operator. Let us now apply PT to evaluate the wave function,

i.e. the unstable mode of the twisted vortex. The unperturbed wave function is simply the

instability mode of the embedded ANO vortex,

ψ(0) = ψ2 = (0, 0, s2, 0, 0, 0, 0)
T . (2.27)
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Figure 8. The twisted vortex instability mode, scalar field components for β = 1.25, ω = 0.13.

Perturbative results for s1, s
∗

1
and s2 are shown with dotted lines, s∗

2
≡ 0 to this order.

Let us now write up the first order perturbations to this mode,

ψ(1) = −N M2S

λ2
S − 2ω2

b + 2kωb
ψS −N

M2A

λ2
A − 2ω2

b + 2kωb
ψA −N

M23

λ2
3 − 2ω2

b + 2kωb
a3 (2.28)

where N = ‖ψ2‖. The first order wavefunction and the exact instability mode exhibit good

agreement, even for not so small values of ǫ (see figures 8 and 9; in that case ǫ = 0.264).

Note that the perturbations depicted in figures 8–9, correspond to a quite large value

of ǫ, and even so the instability mode components are still strongly dominated by s2.

This indicates that the instability of the twisted vortex proceeds similarly to that of the

embedded ANO one, i.e. the vortex starts to expand nearly homogeneously. To support

this conclusion further, we calculate the perturbations of the current of the vortex. The

components, which receive perturbations, are

δj30 = eiℓϑei(Ωt−kz)Ω
{

f1(s
∗
1,−ℓ − s1,ℓ) − f2(s

∗
2,−ℓ − s2,ℓ)

}

, (2.29)

where, s∗1,−ℓ = O(ǫ), s1,ℓ = O(ǫ), and f2 = O(ǫ), i.e. this perturbation does not change the

zero component of the current in the leading order, and

δj33 = eiℓϑei(Ωt−kz) {(k + 2ωa3)f1s1,ℓ − (k + 2ω(a3 − 1))f2s2,ℓ

+ (−k + 2ωa3)f1s
∗
1,−ℓ − (−k + 2ω(a3 − 1))f2s

∗
2,−ℓ + 2(f2

1 − f2
2 )a3,ℓ

}

,

(2.30)

where s∗1,−ℓ = O(ǫ), s1,ℓ = O(ǫ), a3,ℓ = O(ǫ) and f2 = O(ǫ) therefore δj33 = O(ǫ) too.

The deviation of both the eigenvalues and the eigenfunctions of twisted strings is of

O(ǫ2) with respect to those of the ANO ones. This suggests that the eigenmode of the
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Figure 9. The twisted vortex instability mode, vector field components for β = 1.25, ω = 0.13.

Perturbative results are shown with dotted lines.

β M22 Mk
22 (Ω2)(0) ǫmax

1.25 0.6883 0.2934 −0.0188 0.1653

2 1.2442 0.5990 −0.1088 0.2957

2.5 1.4843 0.7270 −0.1827 0.3396

Table 6. Data for the calculation of the energy of the mode ψ2 on a twisted vortex background

ANO string is an energy lowering perturbation of the twisted one. The energy, Ω2 =

(ψ2,D2ψ2), of the embedded ANO instability mode, s2, on a twisted vortex background

can be expanded as

Ω2 = (Ω2)(0) + ǫ2(Ω2)(0) . (2.31)

Using the expansion of the perturbation operator

D2 = D
(0)
2 + ǫ2D

(2)
2 , (2.32)

yields

(Ω2)(2) = M22 +Mk
22(k − ωb) . (2.33)

Table 6 shows clearly the important fact that for not too large values of ǫ, the perturbation

s2 still lowers the energy. The ǫmax values were calculated with k = ωb.

2.4 Properties of the instability modes

Let us recapitulate first, that, as shown in subsection 2.1, the obtained unstable eigenmodes

are all physical. An examination of the above calculated eigenvalues and the corresponding
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eigenfunctions shows clearly that the obtained instability eigenmode is a deformation of the

instability eigenmode of the embedded ANO vortices already mentioned in section 1.3 (See

also appendix B), in the sense that for a given value of the z-direction wavenumber k, the

corresponding eigenmode Ψ and eigenvalue Ω are smooth functions of the twist ω, which,

for ω = ωb reproduce the eigenmodes and eigenvalues of the embedded ANO vortices. In

subsection 2.3 we presented a description of this deformation based on perturbation theory,

with the unperturbed solutions being the eigenmodes of the embedded ANO vortex.

The most important result is that for each k ∈ [−km, km] there is one eigenmode

corresponding to a negative eigenvalue (here km, of course, depends on ω). In this section

we would like to summarize the properties of these eigenmodes, and speculate about the

physical consequences of them.

Firstly, let us briefly analyze the properties of the instability modes. Let us point out

that even for values of ω quite far from the bifurcation ωb (ǫ ≈ 0.2 . . . 0.3), the unstable

mode is dominated by the s2 component (see also section 2.3 and figures 8–9 therein), and

the lowest lying eigenvalue is close to k = ω. If k = ω then the dominant s2 component of

the unstable mode is z-independent. In the previous subsection we have shown, that for

ω ≈ ωb (see table 6 for critical values of ǫ at which the energy of this perturbation becomes

positive) the unstable mode of the ANO vortex is also an energy lowering perturbation

for the twisted one, albeit not an eigenmode. In this way we can explicitly construct a

z-independent energy-lowering perturbation of the twisted string, which is an indication

that homogeneous expansion of twisted strings close to the bifurcation is possible.

The deviation from kmin = ω occurs at small values of ω, far from the bifurcation,

ω = ωb, i.e. the z-dependence of the instability eigenmode becomes important when the

vortices have already quite expanded in the lower scalar field component. In our opinion,

this is another indication that the instability corresponds to an expansion of the string.

In order to see how the string can expand in case a completely homogeneous expansion

is not possible, let us take a perturbation of the form of a wave packet, centered around

z = 0 in coordinate space and around k = kmin in momentum space. Then, looking at

the Fourier transform of such a wave packet one gets ∆x∆k = 1 for the width of the wave

packet in coordinate and momentum space, respectively. Let the amplitude of the packet

be A. Then, the energy of this packet can be calculated as

E = |A|2
[

Ω2
min + Ω2

2(∆k)
2
]

+ . . . ,

which can be negative if ∆k is sufficiently small. However, for the wave packet to make

the current grow (locally make the vortex resemble a vortex of lower ω, i.e. let the vortex

locally get diluted), one needs

∆x < λ =
2π

kmin
,

which gives

∆k ≈ kmin

2π
.

– 20 –



J
H
E
P
1
2
(
2
0
0
9
)
0
6
4

Substituting this into the expression for the energy, at least close to the bifurcation point,

one can see that

E ≈ |A|2
(

Ω2
2

4π2
− 1

)

k2
min < 0 .

We have also checked, using the values of Ω2
min and Ω2

2 obtained above, that for β = 2 for

all values of ω available for our numerical methods the energy contribution of the lump

can be negative, which suggests that the instability of the vortex corresponds to an expan-

sion instability, similarly to the case of the embedded ANO vortices. This result makes

it plausible that a local (lump-like) spreading of the vortex resulting in a configuration

with diluted magnetic flux is possible. Forthermore, a (local) expansion of the vortex can

form out of a general initial perturbation of the string, because the eigenmodes which are

almost z-independent are the ones which are close to the mode corresponding to the largest

negative eigenvalue, and therefore they are the ones that grow most rapidly in time, and a

general initial perturbation (like the lump discussed above) overlaps with these modes.

The existence of the z-independent energy-lowering perturbations for strings close to

the bifurcation and local lumps for all strings independently of ω clearly show that at

least at the outset of the instability an expansion of the string is possible. In the case of

embedded ANO vortices it is known [3, 10], that they are unstable against expansion. The

similarity of the eigenmodes of twisted and embedded ANO strings supports that at least

initially, twisted strings also start to expand. However, in the linear approximation, the

perturbations of the current components, eq. (2.29) and (2.30), are harmonic in z, and thus

the conserved current of the twisted string remains localized. This changes the dynamics of

the expansion, compared to that of the embedded ANO strings considerably; the expansion

cannot go on indefinitely until the current is carried away by radiation. Radiation effects

only occur in higher orders of perturbation theory, and thus the framework of the present

paper, i.e. linearization, is not sufficient to draw definite conclusions about the long term

dynamics of the instability, and the resulting final state.

The stability of the global version of current carrying strings, in a theory with two scalar

fields, has been analyzed in ref. [25]. It has been found that the string is stable against

homogeneous and only z-dependent perturbations, and above a critical value of the (global)

current unstable against time dependent ones. For twisted vortices in the semilocal model,

it is the magnetic flux in the string that is repsonsible for the spreading instability.

Ref. [16] suggests another scenario for the instability of semilocal twisted strings, based

on the harmonic z-dependence of the SU(2)-current flowing in the string (see eqs. (2.29)

and (2.30) in the previous subsection), and the fact that a larger current corresponds to a

more expanded (lower ω) string. There, an analogy with the Plateau-Rayleigh instability

of a fluid stream (droplet formation) is emphasized. The analogue of the Plateau-Rayleigh

instability, as suggested by ref. [16] is the break-up of the string into small, droplet-like

string segments.

As mentioned above, there are good reasons to believe that for not too large values of

the current, twisted strings start to expand initially. For large values of the current where

the nearly homogeneous expansion is not an energy lowering perturbation, the width of
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the string is already quite large, therefore, in neither case can one conclude that the string

will initially start to break up.

Recently, in ref. [26] the dynamics of twisted vortex loops (vortons) has been studied in

a model with two scalar fields. There, it has been found that such a loop is stable against

axially symmetric perturbations (eg. expansion), and unstable against non-axially symmet-

ric ones. Longer time evolution shows that the loop breaks up into smaller pieces. In our

opinion however, this result in itself is not decisive to support a breakup scenario of twisted

strings in the semilocal model. Besides the different initial dynamics, another reason why

breakup of the string is unlikely is that, in order for the string to break up, string ends and

droplet-like configurations must form. Clearly if a string breaks, its magnetic flux must end

in something like a magnetic monopole resulting in a large energy contribution. We expect

the situation to be rather different when non-Abelian gauge fields are present, since then

a possible configuration for a string piece would be the famous dumbbell of Nambu [18].

Another interesting question examined in ref. [16] is the stability of solutions with

periodic boundary conditions at z = 0, L (this is an approximation of a vortex loop, if L

is large). In the semilocal model, periodicity constrains the twist, so that ωL has to be an

integer multiple of 2π,

ωL = 2πp , p ∈ Z . (2.34)

In this case, for not very small values of ω (i.e. not very far from the bifurcation), the

k = ω mode corresponds to a negative eigenvalue, therefore these short strings with periodic

boundary conditions are unstable in the semilocal model.

An interesting observation of ref. [16] is that considering twisted strings as solutions

of the SU(2) × U(1) (electroweak) gauge theory, the instability found in the semilocal

model can be excluded by imposing periodic boundary conditions. In the electroweak

model, with a suitable gauge transformation involving the electromagnetic and the third

SU(2) component vector fields, the z-dependence of the string can be gauged away and

therefore periodic solutions of arbitrary length exist. However such periodic strings are not

gauge equivalent anymore to a piece of a twisted string, the latter being a discontinuous

configuration with infinite energy. Looking at the gauge transformation connecting the

twisted and the untwisted string, the generator of this transformation is proportional to z.

When z is made periodic, it ceases to be a univalued function, and thus, the vector field

component proportional to dz ceases to be a pure gauge.

The gauge transformation which removes the twist of the vortex in the gauged SU(2)×
U(1) model renders the homogeneously expanding mode z-dependent, and thus, this per-

turbed solution is excluded by the periodicity condition. This means that these small peri-

odic strings are stable with respect to purely U(1) perturbations, however, perturbations in

the SU(2) non-Abelian sector can still cause instabilities. Whether such instabilities exist,

could only be decided considering all perturbations in the SU(2)×U(1) gauge theory, as in

the case of electroweak strings [23]. Ref. [23] performs the linearized stability analysis of

electroweak Z-strings. There, Z-stings are found to be unstable unless β is small or θW is

large, and the instability mode is z-independent, occurs in the non-Abelian sector, and is

decoupled from the other field components. However, these properties of the perturbation

equations cannot be generalized to the case of the two-component strings of ref. [16].
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3 Conclusion

We have found that twisted strings in the SU(2)global × U(1) extended Abelian Higgs

(semilocal) model possess a family of unstable modes, parametrized by their wave num-

ber in the z direction, k ∈ [−km, km]. This result is in agreement with that of ref. [16].

We have also obtained a semi-analytical description of twisted strings based on a suitable

perturbative expansion near their bifurcation point with the embedded ANO solutions.

The perturbative solution provides a surprisingly good quantitative approximation for the

twisted strings themselves, as well as for the instability eigenvalues and eigenfunctions.

This way the instability modes of twisted strings are obtained as deformations of those of

the embedded ANO solutions.

Based on the similarity of the unstable modes of twisted and embedded ANO strings,

we suggest that the initial time dynamics is also similar, i.e. at the outset of the instability

twisted strings start to expand (nearly) homogeneously, just like embedded ANO ones.

This idea is also supported by the fact, that the (homogeneous) lowest energy eigenmode

of the embedded ANO string is also an energy lowering perturbation for twisted strings

with ω not far from the bifurcation ωb, although not an eigenmode. For values of the twist

ω ≪ ωb, the formation of a growing lump leading to a local expansion of the string, is also

an energy lowering perturbation. This suggests that for these strings (where the condensate

in the core is already quite sizable), a local expansion is thus a plausible scenario for the

initial dynamics of the instability. Twisted strings carry a global current. Although the

initially homogeneous distribution of this current is changed into a z-dependent one, the

current remains localized in leading order perturbation theory. Therefore the expansion

of the string cannot proceed indefinitely, unless higher order radiation effects do indeed

remove the current from the string.
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A Details of the perturbation equations

In this section we present some of the omitted details of the calculations. Although in

other parts of the paper we have only studied the n = 1, m = 0 case, here we present the

general, arbitrary n and m case.
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A.1 The perturbation operator of the twisted vortices

Let us apply the Fourier transform (2.10) to the equations (2.7). A purely harmonic mode

can be written in detail as

δφ1(z, t;xi) = ei(Ωt−kz)δφ1(k,Ω;xi)

δφ2(z, t;xi) = ei(Ωt−(k−ω)z)δφ2(k,Ω;xi)

δAµ(z, t;xi) = ei(Ωt−kz)δAµ(k,Ω;xi)

δφ∗1(z, t;xi) = ei(Ωt−kz)δφ∗1(−k,−Ω;xi)

δφ∗2(z, t;xi) = ei(Ωt−(k+ω)z)δφ∗2(−k,−Ω;xi)

(A.1)

with the index i running over 1,2. The variables Aµ are real functions, therefore

Aµ(k,Ω, xi) = A∗
µ(−k,−Ω, xi). (A.2)

Substituting these into equations (2.7) yields the perturbation operator M of equa-

tion (2.11):

M =

























D1 U1 V1 V ′
1 A1 B1 0

U∗
1 D∗

1 V ′
1
∗ V∗

1 A∗
1 B∗

1 0

V2 V ′
2 D2 U2 A2 B2 0

V ′
2
∗ V∗

2 U∗
2 D∗

2 A∗
2 B∗

2 0

A∗
1 A1 A∗

2 A2 D3 0 0

B∗
1 B1 B∗

2 B2 0 D3 0

0 0 0 0 0 0 D3

























(A.3)

with
D1 = k2 + Ds + 2iAi∂i + 2kA3 + W1 ,

D∗
1 = k2 + Ds − 2iAi∂i − 2kA3 + W1 ,

D2 = (k − ω)2 + Ds + 2iAi∂i − 2(ω − k)A3 + W2 ,

D∗
2 = (k + ω)2 + Ds − 2iAi∂i − 2(ω + k)A3 + W2 ,

D3 = k2 − ∂2
i + 2|φ|2 ,

where

Ds = −∂2
i +A2

i +A2
3 + β(|φ|2 − 1) Wi = (β + 1)φiφ

∗
i

and
U1 = (β − 1)φ2

1

V1 = (β + 1)φ1φ
∗
2

V ′
1 = (β − 1)φ1φ2

A1 = 2Aiφ1 + 2i∂iφ1

B1 = 2A3φ1

U2 = (β − 1)φ2
2

V2 = (β + 1)φ2φ
∗
1

V ′
2 = (β − 1)φ2φ1

A2 = 2Aiφ2 + 2i∂iφ2

B2 = 2A3φ2

The Fourier-transform takes the equation (2.9) of the ghost modes into

D3χ = Ω2χ, (A.4)

while a gauge transformation takes the form

δAi → δAi + ∂iχ, δA3 → δA3 − ikχ, δA0 → δA0 + iΩχ. (A.5)
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It is useful to introduce complex coordinates

A+ =
e−iϑ

√
2

(

Ar −
i

r
Aϑ

)

A+ =
eiϑ√

2

(

Ar +
i

r
Aϑ

)

. (A.6)

Fourier expansion in the angle variable (in cylindrical coordinates x1 = r, x2 = ϑ, see

eq. (2.12)), omitting the sum over ℓ yields

δφ1(k,Ω) = s1,ℓe
i(n+ℓ)ϑ ,

δφ2(k,Ω) = s2,ℓe
i(m+ℓ)ϑ ,

δA+(k,Ω) = iaℓe
i(ℓ−1)ϑ ,

δA0(k,Ω) = a0,ℓe
iℓϑ ,

δA3(k,Ω) = a3,ℓe
iℓϑ ,

δφ∗1(−k,−Ω) = s∗1,−ℓe
−i(n−l)ϑ ,

δφ∗2(−k,−Ω) = s∗2,−ℓe
−i(m−l)ϑ ,

δA−(−k,−Ω) = −ia∗−ℓe
i(ℓ+1)ϑ ,

a∗0,−ℓ(−k,−Ω) = a0,ℓ(k,Ω) ,

a∗3,−ℓ(−k,−Ω) = a3,ℓ(k,Ω) .

(A.7)

Substituting this into the equations of motion, (2.7) assumes the form of the eigenvalue

problem (2.13) with the operator

Mℓ =





























D1 U1 V V ′ A1 A′
1 B1 0

U1 D∗
1 V ′ V A′

1 A1 B1 0

V V ′ D2 U2 A2 A′
2 B2 0

V ′ V U2 D
∗
2 A

′
2 A2 B2 0

A1 A′
1 A2 A′

2 D3 0 0 0

A′
1 A1 A′

2 A2 0 D∗
3 0 0

B1 B1 B2 B2 0 0 D4 0

0 0 0 0 0 0 0 D4





























(A.8)

with

D1 = Ds +
(n(1 − a) + ℓ)2

r2
+ k2 + 2kωa3 +W1

D∗
1 = Ds +

(n(1 − a) − ℓ)2

r2
+ k2 − 2kωa3 +W1

D2 = Ds +
(m− na+ ℓ)2

r2
+ (k − ω)2 + 2(k − ω)ωa3 +W2

D∗
2 = Ds +

(m− na− ℓ)2

r2
+ (k + ω)2 − 2(k + ω)ωa3 +W2

D3 = Da +
(ℓ− 1)2

r2

D∗
3 = Da +

(ℓ+ 1)2

r2

D4 = Da +
ℓ2

r2

(A.9)

with
Ds = −∇2

r + ω2a2
3 + β(|f |2 − 1) ,

Wi = (β + 1)f2
i ,

Da = −∇2
r + k2 + 2|f |2
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and

U1 = (β − 1)f2
1

V = (β + 1)f1f2

A1 = −
√

2

(

f ′1 −
nf1

r
(1 − a)

)

A′
1 =

√
2

(

f ′1 +
nf1

r
(1 − a)

)

B1 = 2ωa3f1

U2 = (β − 1)f2
2

V ′ = (β − 1)f1f2

A2 = −
√

2

(

f ′2 −
m− na

r
f2

)

A′
2 =

√
2

(

f ′2 +
m− na

r
f2

)

B2 = 2ω(a3 − 1)f2.

The expansion of the gauge transformation generator function can be chosen as

χ = χℓe
iℓϑ. (A.10)

Using this expansion, the ghost mode equation (A.4) assumes the form

D4χℓ = Ω2χℓ. (A.11)

Gauge transformations satisfying the above equation act on the fields as

sa,ℓ → sa,ℓ + iχℓfa ,

aℓ → aℓ −
i√
2

(

χ′
ℓ +

ℓχℓ

r

)

,

a3,ℓ → a3,ℓ − ikχℓ ,

s∗a,−ℓ → s∗a,−ℓ − iχℓfa ,

a∗−ℓ → a∗−ℓ +
i√
2

(

χ′
ℓ −

ℓχℓ

r

)

,

a0,ℓ → a3,ℓ + iΩχℓ .

(A.12)

A.2 The β → ∞ limiting case

In the β → ∞ case the linearized form of the constraint φ∗aφa = 1 is

φ∗aδφa + φaδφ
∗
a = 0. (A.13)

This can be taken into account by the substitution

s1,ℓ = tℓ cos θ + t1,ℓ,

s2,ℓ = −tℓ sin θ + t2,ℓ,

s∗1,−ℓ = tℓ cos θ − t1,ℓ,

s∗2,−ℓ = −tℓ sin θ − t2,ℓ,
(A.14)

and the equations of tℓ, t1,ℓ and t2,ℓ can be obtained with a somewhat lengthy but straight-

forward calculation. Here we present only the ℓ = 0 case:

1

r
(rt′0)

′ =
At0

r2
t0 +Dt0t0 + Et0t1 + Ft0t2 −

m− n√
2r

sin(2θ)(a0 + a∗0) + ω sin(2θ)a3,0 (A.15)

with At0 = −(m − n)(m + n − 2na) cos(2θ), Dt0 = k2 − Ω2 − ω2(1 − 2a3) cos(2θ), Et0 =

2kωa3 cos θ and Ft0 = 2kω(1 − a3) sin θ. Similarly

1

r
(rt′1)

′ =
At1

r2
t1 + Ct1t1 +Dt1t0 + Et1t2 −

√
2 cos θθ′(a0 − a∗0) (A.16)
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with At1 = −1
2

[

m2 − n2 − 4(m− n)na cos2 θ + (m2 − n2) cos(2θ)
]

, Ct1 = 1 + k2 − Ω2 −
ω2

2 − cos(2θ) + 2ω2a3 cos2 θ − ω2

2 cos(2θ) − (θ′)2, Dt1 = 2kωa3 cos θ and Et1 = sin(2θ), and

1

r
(rt′2)

′ =
At2

r2
t2 + Ct2t2 +Dt2t0 + Et2t1 +

√
2 sin θθ′(a0 − a∗0) (A.17)

with At2 = −1
2

[

n2 −m2 + 4(m− n)na cos2 θ + (m2 − n2) cos(2θ)
]

, Ct2 = 1 + k2 − Ω2 +
ω2

2 +cos(2θ)−2ω2a3 sin2 θ− ω2

2 cos(2θ)− (θ′)2, Dt2 = −2kω(a3−1) sin θ and Et2 = sin(2θ).

A.3 The expansion of the perturbation operator in the bifurcation parameter

Let us first expand the components of the perturbation matrix in eq. (A.8) to second order

in ǫ. Here we present only the terms used later on in this paper. The differential operators

expand as

D
(0)
2 = −∇2

r +
(m− na(0) + ℓ)2

r2
+ (k − ωb)

2 + β((f
(0)
1 )2 − 1) ,

D
(1)
2 = 0 ,

D
(2)
2 = 2ωbω2 − 2kω2 −

2(m− na(0) + ℓ)na(2)

r2
+ 2ωb(k − ωb)a

(2)
3

+ 2βf
(0)
1 f

(2)
1 + (2β + 1)(f

(1)
2 )2 ,

(A.18)

D
∗(0)
2 = −∇2

r +
(m− na(0) − ℓ)2

r2
+ (k + ωb)

2 + β((f
(0)
1 )2 − 1) ,

D
∗(1)
2 = 0 ,

D
∗(2)
2 = 2ωbω2 + 2kω2 −

2(m− na(0) − ℓ)na(2)

r2
− 2ωb(k + ωb)a

(2)
3

+ 2βf
(0)
1 f

(2)
1 + (2β + 1)(f

(1)
2 )2 ,

(A.19)

Scalar-scalar interaction terms:

V (0) = 0 ,

V ′(0) = 0 ,

V (1) = (β + 1)f
(0)
1 f

(1)
2 ,

V ′(1) = (β − 1)f
(0)
1 f

(1)
2 ,

V (2) = 0 ,

V ′(2) = 0 .
(A.20)

Scalar-vector interaction terms:

A
(1)
2 = −

√
2

(

f
(1)
2

′
− m− na(0)

r
f

(1)
2

)

,

A′
2
(1)

=
√

2

(

f
(1)
2

′
+
m− na(0)

r
f

(1)
2

)

,

(A.21)

while A
(0)
2 = A′

2
(0) = A

(2)
2 = A′

2
(2) = B

(0)
2 = B

(2)
2 = 0, and

B
(1)
2 = −2ωbf

(1)
2 . (A.22)

This ǫ-expansion of the perturbation matrix elements can be used to obtain the unstable

eigenvalue of twisted vortices close to the bifurcation point via perturbation series.
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β f (1) a(2)

1.25 0.92418 0.53485

2 1.09935 0.61657

2.5 1.19677 0.65959

Table 7. Local vortex background data
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Figure 10. Potentials in the ANO vortex perturbation equations for β = 1.25 (left), β = 2 (right)

and β = 2.5 (below)

B Perturbations of the ANO vortices

The equations describing local vortices can be obtained from the twisted vortex equa-

tions (1.9) by taking f2 = a3 = 0. With the same numerical methods as used in the case

of the twisted vortices, local vortex background data can be obtained, see table 7. Here,

the f (1) and a(2) is defined by the behavior of the vortex profile functions at the origin,

f ∼ f (1)r +O(r2) and a ∼ a(2)r2 +O(r4) (shooting parameters).

The perturbations of local vortices can be described using equation (A.8) with ω = ωb

and f2 = a3 = 0. The a3ℓ component decouples, and it’s equation becomes that of the ghost

modes, eq. (A.11). The s2,ℓ and s∗2,−ℓ components also decouple; their equation (1.14) has

already been given in section 1. The instabilities arising from the extension of the model

with a second Higgs field are described by these equations. For further details see [3, 9]. In

the ℓ = 0 case, there is a further decoupling in the (s1,0, s
∗
1,0, a0, a

∗
0) sector: symmetric: ψS =
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Symm. mode Anti. mode a3 mode

β λ2
S λ2

A λ2
a3

1.25 1.82404 1.62442 1.62442

2 1.76100 1.76100

2.5 1.81813 1.81813

Table 8. Parameters for the ℓ = 0 ANO vortex perturbation modes for β = 1.25, 2 and 2.5

(s1, s1, a0, a0) and antisymmetric ψA = (s1,−s1, a0,−a0) modes are decoupled. For values

of β < 1.5 there is a bound mode in each of these two sectors. For β > 1.5 the symmetric

mode becomes quasi-bound. The parameters for these modes (normed in a way that s′1(0) =

1) are summarized in table 8. There, λ2
A,S,a3 denotes the lowest eigenvalue (corresponding

to k = 0). Figure 10 shows the potential terms for s0 and a0 in the symmetric and antisym-

metric sectors, respectively, for β = 1.25, 2 and 2.5. These explain it clearly why the mode

ψS becomes quasi-bound for higher β (i.e. for β > 1.5, there is no bound mode in the sym-

metric sector, but for 2 < Ω2 < 2β, the scalar channel of the scattering problem is closed).

The gauge dependence of the eigenmodes and the relation of ghost modes to these is

rather straightforward in the case of the ANO vortices. In the analysis of the spectrum of

these vortices, in ref. [11] it has been noted that if one considers the perturbation prob-

lem of the vortices in 2+1D (i.e. z-independent perturbations), then the ghosts cancel the

perturbations of A0, and some modes of the gauge fixed perturbation operators. If we

allow z-dependent perturbations, instead of δA0 a combination of δA0 and δA3 is canceled.

Ref. [11] also identifies the non-physical mode with the antisymmetric mode in the ℓ = 0

case, based on the small difference in their numerical eigenvalues. Here, we would like to

supplement this identification of the canceled mode with some analytical calculation. Ex-

amining eqs. (A.12), one can easily conclude that in the symmetric case, the gauge generator

drops out of s1 = (s1,0 + s∗1,0)/2 and a0 = (a0 +a∗0)/2. On the contrary, such a cancellation

does not happen in the antisymmetric case, thus the ghost eigenvalues shall appear in the

spectrum of the antisymmetric mode. On a twisted vortex background, the couplings are

more complicated, and therefore such a straightforward analysis is not possible.
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